花艺农业网 — 助力农村创业者走上致富之路!

openai用法(open的用法)

来源:互联网时间:2023-04-03 12:18:58标签: openai用法 当前位置:花艺农业网 > chatgpt问答 > 手机阅读

本文目录一览:

openai使用了不受支持的协议

您想问的是openai是否使用了不受支持的协议吗?没有。

OpenAI在发表出版物和研究成果时,遵从开放许可证,如MIT、Apache等,同样也积极寻求合适的许可证,以便公开分享和使用OpenAI的研究成果。因此,OpenAI在使用协议和许可证上一直都非常谨慎和规范,以避免出现不受支持的协议。

OpenAI是一家人工智能研究机构,OpenAI的研究成果和出版物都得到了广泛关注和应用。在使用开源软件和开放许可证的同时,OpenAI也十分重视知识产权保护,避免侵犯他人的知识产权。对于任何可能存在违反协议的情况,OpenAI都会积极采取措施进行调查和处理。

openai能当爬虫使吗

你好,可以的,Spinning Up是OpenAI开源的面向初学者的深度强化学习资料,其中列出了105篇深度强化学习领域非常经典的文章, 见 Spinning Up:

博主使用Python爬虫自动爬取了所有文章,而且爬下来的文章也按照网页的分类自动分类好。

见下载资源:Spinning Up Key Papers

源码如下:

import os

import time

import urllib.request as url_re

import requests as rq

from bs4 import BeautifulSoup as bf

'''Automatically download all the key papers recommended by OpenAI Spinning Up.

See more info on:

Dependency:

bs4, lxml

'''

headers = {

'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'

}

spinningup_url = ''

paper_id = 1

def download_pdf(pdf_url, pdf_path):

"""Automatically download PDF file from Internet

Args:

pdf_url (str): url of the PDF file to be downloaded

pdf_path (str): save routine of the downloaded PDF file

"""

if os.path.exists(pdf_path): return

try:

with url_re.urlopen(pdf_url) as url:

pdf_data = url.read()

with open(pdf_path, "wb") as f:

f.write(pdf_data)

except: # fix link at [102]

pdf_url = r""

with url_re.urlopen(pdf_url) as url:

pdf_data = url.read()

with open(pdf_path, "wb") as f:

f.write(pdf_data)

time.sleep(10) # sleep 10 seconds to download next

def download_from_bs4(papers, category_path):

"""Download papers from Spinning Up

Args:

papers (bs4.element.ResultSet): 'a' tags with paper link

category_path (str): root dir of the paper to be downloaded

"""

global paper_id

print("Start to ownload papers from catagory {}...".format(category_path))

for paper in papers:

paper_link = paper['href']

if not paper_link.endswith('.pdf'):

if paper_link[8:13] == 'arxiv':

# paper_link = ""

paper_link = paper_link[:18] + 'pdf' + paper_link[21:] + '.pdf' # arxiv link

elif paper_link[8:18] == 'openreview': # openreview link

# paper_link = ""

paper_link = paper_link[:23] + 'pdf' + paper_link[28:]

elif paper_link[14:18] == 'nips': # neurips link

paper_link = ""

else: continue

paper_name = '[{}] '.format(paper_id) + paper.string + '.pdf'

openai用法(open的用法)

if ':' in paper_name:

paper_name = paper_name.replace(':', '_')

if '?' in paper_name:

paper_name = paper_name.replace('?', '')

paper_path = os.path.join(category_path, paper_name)

download_pdf(paper_link, paper_path)

print("Successfully downloaded {}!".format(paper_name))

paper_id += 1

print("Successfully downloaded all the papers from catagory {}!".format(category_path))

def _save_html(html_url, html_path):

"""Save requested HTML files

Args:

html_url (str): url of the HTML page to be saved

html_path (str): save path of HTML file

"""

html_file = rq.get(html_url, headers=headers)

with open(html_path, "w", encoding='utf-8') as h:

h.write(html_file.text)

def download_key_papers(root_dir):

"""Download all the key papers, consistent with the categories listed on the website

Args:

root_dir (str): save path of all the downloaded papers

"""

# 1. Get the html of Spinning Up

spinningup_html = rq.get(spinningup_url, headers=headers)

# 2. Parse the html and get the main category ids

soup = bf(spinningup_html.content, 'lxml')

# _save_html(spinningup_url, 'spinningup.html')

# spinningup_file = open('spinningup.html', 'r', encoding="UTF-8")

# spinningup_handle = spinningup_file.read()

# soup = bf(spinningup_handle, features='lxml')

category_ids = []

categories = soup.find(name='div', attrs={'class': 'section', 'id': 'key-papers-in-deep-rl'}).\

find_all(name='div', attrs={'class': 'section'}, recursive=False)

for category in categories:

category_ids.append(category['id'])

# 3. Get all the categories and make corresponding dirs

category_dirs = []

if not os.path.exitis(root_dir):

os.makedirs(root_dir)

for category in soup.find_all(name='h2'):

category_name = list(category.children)[0].string

if ':' in category_name: # replace ':' with '_' to get valid dir name

category_name = category_name.replace(':', '_')

category_path = os.path.join(root_dir, category_name)

category_dirs.append(category_path)

if not os.path.exists(category_path):

os.makedirs(category_path)

# 4. Start to download all the papers

print("Start to download key papers...")

for i in range(len(category_ids)):

category_path = category_dirs[i]

category_id = category_ids[i]

content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})

inner_categories = content.find_all('div')

if inner_categories != []:

for category in inner_categories:

category_id = category['id']

inner_category = category.h3.text[:-1]

inner_category_path = os.path.join(category_path, inner_category)

if not os.path.exists(inner_category_path):

os.makedirs(inner_category_path)

content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})

papers = content.find_all(name='a',attrs={'class': 'reference external'})

download_from_bs4(papers, inner_category_path)

else:

papers = content.find_all(name='a',attrs={'class': 'reference external'})

download_from_bs4(papers, category_path)

print("Download Complete!")

if __name__ == "__main__":

root_dir = "key-papers"

download_key_papers(root_dir)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

openai国内如何使用

用法如下。

OpenAI在国内也有不少的普及应用,大家都知道OpenAI是一家人工智能学习开发公司,成立于2015年,由ElonMusk,GregBrockman,IlyaSutskever和SamAltman等四位创始人共同创办。OpenAI的主要目标是使AI技术的发展走向更平衡、更公平的方向,探索人工智能在各个领域的应用,帮助人们了解AI技术,以便更好地应用它们。

openai独享一人一号,每个都带api密钥key。

怎么用openai写论文

要使用openai写论文首先是要安装好al小助手,要下载al text generator 的插件,然后安装并且配置好ai小助手,接着是要生成和管理apl的密钥了,也就是登录的密码,然后在使用ai编辑器编辑文件文本,最后通过数据元方式输出就可以了。

openai怎么调中文

1、首先进入电脑屏幕操控界面,打开OPENIV,单击红框。

2、其次点击openIVoptions。

3、然后点击language后出现语言设置界面。

4、最后设置界面会弹出各种语言的选择栏,选择简体中文按close即可。

上一篇gpt3中文(gpt3中文 网络结构)

下一篇女篮世界杯什么时候决赛,女篮世界杯决赛输给美国队最终获亚军?

相关文章:

chatgpt问答本月排行